Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38543720

RESUMO

BACKGROUND: this study aims to evaluate the efficacy of tixagevimab/cilgavimab (Evusheld™) against various SARS-CoV-2 variants, including newer Omicron sublineages, in an immunocompromised cohort and in vitro. STUDY DESIGN: Conducted in Italy, this research involves immunocompromised patients who received Evusheld. It evaluates serum neutralization activity against different SARS-CoV-2 strains (20A.EU1, BA.5, BQ.1, XBB.1.5, XBB.1.16, and EG.5) before (T0), after 14 (T1), and after 30 (T2) days from the tixagevimab/cilgavimab injection. Furthermore, the in vitro activity of Evusheld against SARS-CoV-2 VOCs was evaluated. RESULTS: The cohort was composed of 72 immunocompromised patients. The serum neutralizing activity of tixagevimab/cilgavimab-treated patients was notably lower against newer variants such as BQ.1, XBB.1.5, XBB.1.16, and EG.5. Then, the in vitro study detailed specific EC50 values to quantify the activity of tixagevimab/cilgavimab against various SARS-CoV-2 VOCs. Newer variants like BQ.1 and XBB.1.5 exhibited notably lower neutralization, underscoring the challenges in effectively countering the evolving virus. Interestingly, tixagevimab/cilgavimab maintained reduced but still valid activity against EG.5 with an EC50 of 189 ng/mL and Cmax/EC90 of 110.7. CONCLUSIONS: Tixagevimab/cilgavimab efficacy wanes against novel subvariants. This underscores the critical need for ongoing adaptation and vigilance in prophylactic strategies to effectively counter the dynamic and unpredictable nature of the COVID-19 pandemic.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Pandemias
2.
J Clin Virol ; 168: 105584, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778220

RESUMO

BACKGROUND: Tixagevimab-cilgavimab has been approved as primary pre-exposure prophylaxis in immunocompromised patients as support or replacement for vaccination, even though the Omicron variant of concern (VOC) was spreading at the time. OBJECTIVES: The aim of our study was to evaluate the post-injection neutralising activity (NT90-Abs titre) against the Omicron BA.5 variant in fully vaccinated immunocompromised patients. STUDY DESIGN: NT90-Abs titres against BA.5 and 20A.EU1 as well as anti-spike and anti-receptor-binding domain IgG were evaluated 0, 14, and 30 d after tixagevimab-cilgavimab administration. The primary end point was NT90-Abs titres ≥ 80 against BA.5 in ≥ 25% of patients, and the secondary end point was NT90-Abs titres ≥ 1280 against 20A.EU1 in >50% of patients on day 14. RESULTS: At baseline, 35.2%, 37.02%, and 32.5% of booster vaccinated patients exhibited undetectable levels of anti-S and anti-RBD IgG antibodies such as NT90-Abs titres against A20.EU1. Moreover, 35 patients (61.5%) had undetectable NT90-Abs titres against BA.5. On day 14, IgG anti-S and anti-RBD levels were 3880 BAU/mL and 776.6 AU/mL, respectively. Only 12.5% of patients met a NT90-Abs titres ≥ 80 against BA.5, whereas the median NT90-Abs titre against 20A.EU1 was 1280. NT90-Abs titres against BA.5 were 64-fold lower than those against A20.EU1. Four patients (7.5%) had a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the 3 months after treatment, all with a time gap between the booster vaccination and injection. CONCLUSIONS: To date, tixagevimab-cilgavimab cannot be considered a substitute for vaccination but may be a useful supporting therapy if the recommended dose for pre-exposure prophylaxis is doubled.


Assuntos
Anticorpos Neutralizantes , Profilaxia Pré-Exposição , Humanos , Hospedeiro Imunocomprometido , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais
3.
Viruses ; 15(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37515263

RESUMO

BACKGROUND: This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. METHODS: A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. RESULTS: Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h, with an HSA score of 52.8 and 28.6, respectively (p < 0.0001). These data were confirmed by performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir until she tested negative. CONCLUSIONS: Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Ritonavir , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Microorganisms ; 10(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36557724

RESUMO

After almost three years of the pandemic, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still spreading around the world, causing notable sanitary and social issues. New antiviral therapies are constantly under investigation. However, few options have been approved for the treatment of COVID-19. Clinical trials are currently ongoing to evaluate the efficacy of nelfinavir on mild−moderate COVID-19. This study aims to investigate the activity of this compound on SARS-CoV-2 "Variants of Concern" (VOCs), comparing its effectiveness with the approved drugs remdesivir and molnupiravir. The experiments were conducted in a biosafety level 3 facility. In this study, we used a Vero-E6-cell-based infection assay to investigate the in vitro activity of nelfinavir, molnupiravir, and remdesivir. Four strains of SARS-CoV-2 were tested: 20A.EU1, B.1.1.7, P.1, and B.1.617.2. All compounds reached micromolar/submicromolar EC50, EC90, and EC99. Furthermore, the Cmax/EC50 and Cmax/EC90 ratios were >1 for all compounds and all variants tested. Our study demonstrated that nelfinavir, as molnupiravir, and remdesivir are effective in vitro on SARS-CoV-2 variants.

5.
Curr HIV Res ; 20(4): 296-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909272

RESUMO

BACKGROUND: Vaccines have had a fundamental impact in containing the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. However, there are few efficacy data relating to frail patients, including the HIV-positive patient. OBJECTIVE: This study evaluated the Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2) serum neutralization in People Living with HIV (PLWH) compared to a cohort of healthy volunteers both vaccinated with BNT162b2. METHODS: A serum sample was then withdrawn 14-21 days after the second dose of the vaccine and a serum neutralization assay was performed on Vero E6 cells. The experiments were performed using two strains of SARS-CoV-2 as 20A.EU1 and B.1.617.2. RESULTS: PLWH on Antiretroviral Therapy (ART) showed a vaccine response comparable to the healthy subjects. No correlation between CD4 count or CD4/CD8 and neutralizing antibodies (NTAbs) has been found. No differences in NT-Abs between patients with CD4 nadir above or under 200 cells/µl have been found. In both cohorts, vaccine-elicited serum better neutralized 20A.EU1 than B.1.617.2 strain. CONCLUSION: PLWH in ART and with good immuno-virological recovery showed a vaccine response comparable to that of healthy subjects and regardless of their immunological status at HIV infection diagnosis. However, larger studies are needed to confirm our results and to evaluate the vaccine response even in patients with low CD4 counts.


Assuntos
COVID-19 , Infecções por HIV , Vacinas Virais , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Vacina BNT162 , Infecções por HIV/tratamento farmacológico , Anticorpos Neutralizantes
7.
Microorganisms ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889194

RESUMO

Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using five two-fold serial dilution of compound concentrations ≤EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were performed in triplicate, each being repeated at least three times. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p < 0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p < 0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p = 0.01) and 13.08 (p < 0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro.

8.
Mediterr J Hematol Infect Dis ; 14(1): e2022050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865399

RESUMO

Background and Objective: In patients with mild-to-moderate COVID-19 and at high risk of progression, casirivimab/imdevimab and bamlanivimab/etesivimab were utilized in Umbria from late April to November 2021. This period was characterized by an initial prevalence of alpha (B1.1.1.7) and its progressive substitution with the delta variant (B1.617.2). Many delta infections occurred in patients already recently vaccinated.Our study aimed to observe the clinical outcome of patients treated with mAbs associations in a subgroup in which viral isolation was obtained, the pre and post-infusion neutralizing antibody activity against their viral isolate. Methods: In this retrospective observational study, the clinical outcome before and 30 days after infusion, the baseline neutralizing activity of sera against their viral isolate, and the titers of neutralizing antibodies (NAbTs) one-hour post-infusion relative to the type of mAbs associations were evaluated. Results: Better efficacy of the mAbs combinations relative to monotherapy regarding global hospitalization (p = 0.021) and 30 days symptoms (p<0.001) were seen. Infections after vaccination mostly occurred in the absence of neutralizing antibody titers (NAbT). SARS-CoV-2 delta variants were isolated within 2-4 months from vaccinations without NAbTs, or in the presence of high specific neutralizing activity after 5-6 months. NAbTs were higher after casirivimab/imdevimab infusion (p=0.001). Conclusions: Alpha infections occurred prevalently in unvaccinated patients or after 5-6 months, while delta infections prevailed in vaccinated ones. A poor neutralizing activity in most of these patients was seen. A higher NAbT after infusion of casirivimab/imdevimab was observed.

9.
J Infect ; 83(4): 467-472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320390

RESUMO

OBJECTIVES: The emergence of new variants of concern (VOCs) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) around the world significantly complicated the exit from Coronavirus disease 2019 (COVID-19) pandemic. The aim of this study was to evaluate the serum neutralizing activity of three cohorts. METHODS: BNT162b2-elicited serum (N = 103), candidates as hyper-immune plasma donors (N = 90) and patients infected with the SARS-CoV-2 P1 variant (N = 22) were enrolled. Three strains of SARS-CoV-2 have been tested: 20A.EU1, B.1.1.7 (alpha) and P.1 (gamma). Neutralizing antibodies (NT-Abs) titers against SARS-CoV-2 were evaluated. RESULTS: B.1.1.7 and P.1 are less efficiently neutralized by convalescent wild-type infected serums if compared to 20A.EU1 strain (mean titer 1.6 and 6.7-fold lower respectively). BNT162b2 vaccine-elicited human sera show an equivalent neutralization potency on the B.1.1.7 but it is significantly lower for the P.1 variant (mean titer 3.3-fold lower). Convalescent P.1 patients are less protected from other SARS-CoV-2 strains with an important reduction of neutralizing antibodies against 20A.EU1 and B.1.1.7, about 12.2 and 10.9-fold, respectively. CONCLUSIONS: BNT162b2 vaccine confers immunity against all the tested VOCs, while previous SARS-CoV-2 infection may be less protective.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos
10.
Redox Biol ; 45: 102041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146958

RESUMO

Viral infections sustain their replication cycle promoting a pro-oxidant environment in the host cell. In this context, specific alterations of the levels and homeostatic function of the tripeptide glutathione have been reported to play a causal role in the pro-oxidant and cytopathic effects (CPE) of the virus. In this study, these aspects were investigated for the first time in SARS-CoV2-infected Vero E6 cells, a reliable and well-characterized in vitro model of this infection. SARS-CoV2 markedly decreased the levels of cellular thiols, essentially lowering the reduced form of glutathione (GSH). Such an important defect occurred early in the CPE process (in the first 24 hpi). Thiol analysis in N-acetyl-Cys (NAC)-treated cells and membrane transporter expression data demonstrated that both a lowered uptake of the GSH biosynthesis precursor Cys and an increased efflux of cellular thiols, could play a role in this context. Increased levels of oxidized glutathione (GSSG) and protein glutathionylation were also observed along with upregulation of the ER stress marker PERK. The antiviral drugs Remdesivir (Rem) and Nelfinavir (Nel) influenced these changes at different levels, essentially confirming the importance or blocking viral replication to prevent GSH depletion in the host cell. Accordingly, Nel, the most potent antiviral in our in vitro study, produced a timely activation of Nrf2 transcription factor and a GSH enhancing response that synergized with NAC to restore GSH levels in the infected cells. Despite poor in vitro antiviral potency and GSH enhancing function, Rem treatment was found to prevent the SARS-CoV2-induced glutathionylation of cellular proteins. In conclusion, SARS-CoV2 infection impairs the metabolism of cellular glutathione. NAC and the antiviral Nel can prevent such defect in vitro.


Assuntos
COVID-19 , Glutationa , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredução , RNA Viral , SARS-CoV-2
11.
Viruses ; 13(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807521

RESUMO

The aim of this study was to establish the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on inanimate surfaces such as plastic, stainless steel, and glass during UV-C irradiation which is a physical means commonly utilized in sanitization procedures. The viral inactivation rate, virus half-life, and percentage of titer reduction after UV-C irradiation were assessed. Infectivity was maintained on plastic and glass until 120 h and on stainless steel until 72 h. The virus half-life was 5.3, 4.4, and 4.2 h on plastic, stainless steel, and glass, respectively. In all cases, titer decay was >99% after drop drying. UV-C irradiation efficiently reduced virus titer (99.99%), with doses ranging from 10.25 to 23.71 mJ/cm2. Plastic and stainless steel needed higher doses to achieve target reduction. The total inactivation of SARS-CoV-2 on glass was obtained with the lower dose applied. SARS-CoV-2 survival can be long lasting on inanimate surfaces. It is worth recommending efficient disinfection protocols as a measure of prevention of viral spread. UV-C can provide rapid, efficient and sustainable sanitization procedures of different materials and surfaces. The dosages and mode of irradiation are important parameters to consider in their implementation as an important means to fight the SARS-CoV-2 pandemic.


Assuntos
COVID-19/virologia , Desinfecção/métodos , SARS-CoV-2/efeitos da radiação , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Desinfecção/instrumentação , Vidro/análise , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Aço Inoxidável/análise , Raios Ultravioleta , Carga Viral/efeitos da radiação
13.
J Infect ; 56(1): 58-64, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17905438

RESUMO

OBJECTIVES: Tipranavir (TPV) is a non-peptidic protease inhibitor (PI) that represents one of the latest options approved in the salvage setting for HIV-infected multi-drug resistant patients. In this study, we explored whether TPV affects virulence of opportunistic fungi such as Cryptococcus neoformans and Candida albicans. METHODS: C. neoformans and C. albicans were cocultured in the presence or absence of TPV for various time periods. Subsequently, growth inhibition, phospholipases, proteases and capsule size were examined. In selected in vivo experiments, TPV was administered in immunocompetent and immunosuppressed mice. Survival rate and colony forming units from organs were evaluated in mice systemically challenged with C. neoformans or C. albicans. RESULTS: Indeed, when cultured in the presence of TPV, both fungi showed significant reduction in protease and phospholipase production, but TPV showed an opposite effect on the major virulence factors of C. neoformans and C. albicans by inhibiting capsule while promoting mycelial transition, respectively. TPV impaired in vitro growth of C. neoformans, but not of C. albicans. Moreover, TPV-treated C. neoformans, but not C. albicans, resulted more susceptible to killing by human neutrophils. Finally, TPV showed a therapeutic effect in experimental systemic cryptococcosis, as evaluated by reduced fungal burden in brain and liver of immunocompetent and immunodepressed mice. CONCLUSIONS: These new data indicate that TPV could act in multiple ways by diversifying its effects on various opportunistic pathogenic fungi.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Pironas/farmacologia , Pironas/uso terapêutico , Animais , Encéfalo/microbiologia , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Candida albicans/fisiologia , Parede Celular/efeitos dos fármacos , Criptococose/microbiologia , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunocompetência , Hospedeiro Imunocomprometido , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Micélio/metabolismo , Neutrófilos/imunologia , Peptídeo Hidrolases/biossíntese , Fagocitose , Fosfolipases/biossíntese , Células-Tronco , Sulfonamidas , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...